The report, “The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants,” was published May 21 in the journal Cell.
Penium margaritaceum belongs to a group of freshwater algae called charophytes, and specifically to a subgroup called the Zygnematophyceae, which had a common ancestor with the first land plants some 600 million years ago. In order to shift from water to land – a transition that still puzzles scientists – plants had to protect themselves from drying out and from ultraviolet (UV) radiation, and they had to develop structures to support themselves without the buoyancy provided by water.
The researchers found footprints of all these adaptations in the Penium genome, providing insight into the mechanisms and genetics that early terrestrial plants required.
“We knew almost nothing about the genomes of the immediate ancestors of land plants,” said senior author Jocelyn Rose, professor of plant biology in the College of Agriculture and Life Sciences.
“We now have exciting insights into the last common ancestor of algae and land plants,” Rose said, “and that allows plant biologists to infer the origins of land plant molecular pathways, developmental systems and biological processes, and to place them in the context of land colonization in ways that have not previously been possible.”
“We now have exciting insights into the last common ancestor of algae and land plants,” Rose said.
"That allows plant biologists to infer the origins of land plant molecular pathways, developmental systems and biological processes, and to place them in the context of land colonization in ways that have not previously been possible,” Rose said.