Fox Lab
Prof. Fox is no longer mentoring undergraduates, graduate students, and postdocs in laboratory research.
What have we found interesting about the cell biology of mitochondria?
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix is bounded by the highly structured inner membrane, which is in turn bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which 8 major constituents are coded and synthesized in the matrix.
The oxygen we breathe and the food we eat are ultimately consumed in mitochondria by respiration, which is coupled with oxidative phosphorylation to capture energy. The enzyme complexes that carry this out are assembled in the inner mitochondrial membrane from protein subunits coded by both nuclear genes and genes in mitochondrial DNA.
While mitochondria are derived from eubacterial ancestors, the organellar genetic systems found today in animals, plants and fungi do not closely resemble those of modern eubacteria. To understand how these small but important genomes are expressed, we need to study the organelles themselves.
Our research has been aimed at understanding how expression of genes in mitochondrial DNA is controlled by nuclear genes, and how mitochondrially coded proteins are assembled with nuclearly coded proteins into the respiratory chain complexes. Budding yeast (Saccharomyces cerevisiae) is a wonderful organism in which to study these interactions, since mutations in both genetic systems can be isolated and manipulated.
Furthermore, genetic transformation and homologous recombination allow the replacement of wild-type by mutant, or novel, DNA sequences in both the nuclear and mitochondrial genomes.