Selected Publications

  • S-C Hsieh and JE Peters (2024) Natural and engineered guide RNA-directed transposition with CRISPR-associated Tn7-like transposons. Annual Reviews in Biochemistry 93:139-161
  • Y Tang*, J Zhang, J Guan, W Liang, MT Petassi, Y Zhang, X Jiang, M Wang, W Wu*, H-Y Ou*, JE Peters* (2024) Transposition with Tn3-family elements occurs through interaction with the host β-sliding clamp processivity factor. Nucleic Acids Research. Advance Article
  • Y Shen, SS Krishnan, MT Petassi, MA Hancock, JE Peters, and A Guarné (2024) Assembly of the Tn7 targeting complex by a regulated stepwise process. Molecular Cell 84:2368-2381
  • A Correa III, S Shehreen, L Chacon Machado, J Thesier, LM Cunic, MT Petassi, J Chu, BJ Kapili, Y Jia, KA England, JE Peters (2024) Novel mechanisms of diversity generation in Acinetobacter baumannii resistance islands driven by Tn7-like elements. Nucleic Acids Research 52:3180-3198
  • J-U Park, MT Petassi, S-C Hsieh, E Mehrotra, G schuler, J Budhathoki, VH Truong, S. Thyme, A Ke, EH Kellogg*, JE Peters* (2023) Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transportation. Molecular Cell 83:1827-1838
  • SA Shmakov, ZK Barth, Ks Makarova, YI Wolf, V Brover, JE Peters*, and EV Koonin* (2023) Widespread CRISPR repeat-like RNA regulatory elements in CRISPR-Cas system. Nucleic Acids Research 51:8150-8168 
  • S-C Hsieh and JE Peters (2022) Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Nucleic Acids Research 51:765-782
  • J-U Park, AW-L Tsai, TH Chen, JE Peters, and EH Kellogg (2022) Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. Proc. Natl. Acad. Sci. USA 119:e2202590119
  • Z Kaczmarska, M Czarnocki-Cieciura, KM Górecka-Minakowska, RJ Wingo, J Jackiewicz, W Zajko, JT Poznański, M Rawski, T Grant, JE Peters*, M Nowotny* (2022)  Structural basis of transposon end recognition explains central features of Tn7 transposition systems. Molecular Cell 82:2618-2632.e7
  • Y Shen, J Gomez-Blanco, MT Petassi, JE Peters, J Ortega, and A Guarné (2022) Structural basis for DNA targeting by the Tn7 transposon. Nature Structure and Molecular Biology 29:143-151
  • J-U Park, A Tsai, E Mehrotra, MT Petassi, S-C Hsieh, A Ke, JE Peters*, and EH Kellogg* (2021) Structural basis for target-site selection in RNA-guided DNA transposition systems. Science 6556:768-774
  • S-C Hsieh, and JE Peters (2021) Tn7-CRISPR-Cas12K elements manage pathway choice using truncated repeat-spacer units to target tRNA attachment sites. bioRxiv https://doi.org/10.1101/2021.02.06.429022
  • MT Petassi, S-C Hsieh, and JE Peters (2020) Guide RNA categorization enables target site choice in Tn7-CRISPR-Cas transposons. Cell 183:1757-1771
  • JE Peters (2019) Targeted transposition with Tn7 elements: Safe sites, mobile plasmids, CRISPR/Cas and beyond. Molecular Microbiology 12:1635-1644
  • G Faure, SA Shmakov, WX Yan, DR Cheng, DA Scott, JE Peters, KS Makarova and EV Koonin (2019) CRISPR–Cas in Mobile Genetic Elements: Counter-Defence and Beyond. Nature Reviews Microbiology 17:513-525
  • JM Peters, B-M Koo, R Patino, GE Heussler, CC Hearne, J Qu, YF Inclan, JS Hawkins, CHS Lu, MR Silvis, MM Harden, H Osadnik, JE Peters, JN Engel, RJ Dutton, AD Grossman, CA Gross, and OS Rosenberg (2019) Enabling Genetic Analysis of Diverse Bacteria with Mobile-CRISPRi. Nature Microbiology 4:244-250
  • TC Hinkley, S Singh, S Garing, A-L M Le Ny, KP Nichols, JE Peters, JN Talbert, and SR Nugen (2018). A phage-based assay for the rapid, quantitative, and single CFU visualization of E. coli (ECOR #13) in drinking water. Scientific Reports 8:14630
  • TC Hinkley, S Garing, S. Singh, KP Nichols, JE Peters, JN Talbert, and SR Nugen (2018) Reporter bacteriophage T7NLC utilizes a novel NanoLuc::CBM fusion for the ultrasensitive detection of Escherichia coli in water. Analyst 143:4074-4082
  • JE Peters*, KS Makarova, S Shmakov, and EV Koonin* (2017) Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl. Acad. Sci. USA 114:E7358-E7366
  • M Manohar, HW Choi, PM Manosalva, C Austin, JE Peters, and D Klessig (2017) Plant and human MORC proteins have DNA modifying activities similar to type II topoisomerases, but require additional factor(s) for full activity. Molecular Plant-Microbe Interactions 30:87-100
  • Q Shi, MR Straus, JJ Caron, H Wang, YS Chung, A Guarné*, JE Peters* (2015) Conformational toggling controls target site choice for the heteromeric transposase element Tn7. Nucleic Acids Research. 43:10746-10759.
  • PK Singh, G Bourque, NL Craig, JT Dubnau, C Feschotte, DA Flasch, KL Gunderson, HS Malik, JV Moran, JE Peters, RK Slotkin, HL Levin (2014) Mobile Genetic Elements and Genome Evolution 2014. Mobile DNA 5:26
  • JE Peters (2014) Tn7. Microbiology Spectrum 2(5) doi: 10.1128/microbiolspec.MDNA3-0010-2014
  • JE Peters, A Fricker, B. Kapili, M. Petassi (2014) Heteromeric transposase elements: Generators of genomic islands across diverse bacteria. Molecular Microbiology 6:1084-1092
  • A Fricker and JE Peters (2014) Vulnerabilities on the Lagging-Strand Template: Opportunities for Mobile Elements. Annual Reviews in Genetics 48:167-186
  • HC den Bakker, CA Desjardins, AD Griggs, JE Peters, Q Zeng, SK Young, CD Kodira, C Yandava, TA Hepburn, BJ Haas, BW Birren, M Wiedmann (2013) Evolutionary Dynamics of the Accessory Genome of Listeria monocytogenes. PLoS ONE 8(6):e67511
  • AC Moreno Switt, HC den Bakker, CA Cummings, LD Rodriguez-Rivera, G Govoni, ML Raneiri, L Degoricija, S Brown, K Hoelzer, JE Peters, E Bolchacova, MR Furtado, M Wiedmann (2012) Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS ONE 7(7):e41247
  • Q Shi, JC Huguet-Tapia and JE Peters (2009) Tn917 targets the region where DNA replication terminates in B. subtilis highlighting a differnece in chromosome processing in the Firmicutes. Journal of Bacteriology 191:7623-7627
  • AR Parks, Z Li, Q Shi, RM Owens, MM Jin, and JE Peters (2009) Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 138:685-695 (Preview)
  • AR Parks and JE Peters (2009) Tn7 elements: Engendering diversity from chromosome to episome. Plasmid 61:1-14
  • Q Shi, AR Parks, BD Potter, IJ Safir, Y Luo, BM Forster, and JE Peters (2008) DNA damage differentially activates regional chromosomal loci for Tn7 transposition in E. coli. Genetics 179:1237-1250
  • C Bordi, B. Butcher, Q Shi, AB Hachmann, JE Peters, and JD Helmann (2008) In vitro mutagenesis of Bacillus subtilis using a modified Tn7 with an outward facing inducible promoter. Applied and Environmental Microbiology 74:3419-3425
  • JA Finn, AR Parks, and JE Peters (2007) Transposon Tn7 directs transposition into the genome of filamentous bacteriophage M13 using the element-encoded TnsE protein. Journal of Bacteriology 189:9122-9125
  • AR Parks and JE Peters (2007) Transposon Tn7 is widespread in diverse bacteria and forms genomic islands. Journal of Bacteriology 189:2170-2173
  • LM Junker, JE Peters, and AG Hay (2006) Global analysis of candidate genes important for fitness in a competitive biofilm using DNA-array-based transposon mapping. Microbiology 152:2233-45
  • DA Garsin, J Urbach, JC Huguet-Tapia, JE Peters, and FM Ausubel (2004) Construction of an Enterococcus faecalis Tn917-mediated gene disruption library offers insight into Tn917 insertion patterns. Journal of Bacteriology 186:7280-7272
  • JE Peters, TE Thate, and NL Craig (2003) Definition of the Escherichia coli MC4100 genome by use of a DNA array. Journal of Bacteriology 185:2017-2021
  • JE Peters and NL Craig (2001) Tn7: smarter than we thought. Nature Reviews: Molecular Cell Biology 2:806-814
  • JE Peters and NL Craig (2001) Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes and Development 15:737-747
  • JE Peters and NL Craig (2000) Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Molecular Cell 6:573-582

Book and Book Chapters