Back

Discover CALS

See how our current work and research is bringing new thinking and new solutions to some of today's biggest challenges.

For one weekend, the McGraw Tower clocks told more than just time.

On the evenings of Sept. 28-29, two graduate students and two postdoctoral fellows from four different departments presented a new media light installation depicting a nucleotide-by-nucleotide “walk” through human genomes. Flashing lights programmed by the students represented different populations from around the world. The light installation — called "ATGC" — was part of the 2018 Cornell Council for the Arts Biennial.

The installation represented genomes of 32 diverse human populations, one genome per LED.  The light showed genetic similitude and variation of the four nucleotides in DNA: A, T, G and C.  The nucleotides lit up as red (T), blue (C), green (A), and white (C) using LED lights that blink to depict a journey through the DNA of these 32 genomes. 

Seen through the clock faces, the lights blinked simultaneously in colorful unison until genetic variation in any individual genome was encountered.  When variation was detected, the syncopation of the lights paused briefly, giving the viewer a chance to perceive genomic diversity.

The installation was created by:

  • Yasir H. Ahmed-Braimah, postdoctoral fellow in molecular biology and genetics
  • Josh Strable, postdoctoral fellow in the School of Integrative Plant Science
  • Juan Felipe Beltrán doctoral student in the field of computational biology
  • Kate Greder, doctoral student in the field of fiber science and apparel design

The field of genomics has begun to permeate many aspects of human life: from the potential in personalized medicine to the promises of a deeper personal history through ancestry analysis. Genomic studies inform our understanding of migration, conservation, race, and disease.  As a stable and yet dynamic medium, DNA is a template for natural selection (a process that acts over millions of years) or can be edited using CRISPR/Cas9 (a process acting in a single generation). 

By (de)coding the human genome through LED lights, the project aimed to illuminate the persistence of the genome as the ultimate archival material, and is an indication, in part, to the history of human migratory passage, according to the students.  The project was an experiment to perceive the scale, unison and variation of the core human blueprint. 

Keep Exploring

Gael Pressoir in field

News

Centers of Innovation announced with goal to develop improved crops worldwide
The CoIs will act as regional hubs for crop improvement, driving tools, technologies and methods that will target crops that are essential for food security in a range of environments, cropping systems and key stakeholders. Each CoI will be...
  • Department of Global Development
  • Agriculture
  • Global Development
harvested eggplant

News

New mobile app provides lifeline for farmers growing Bt eggplant
The new app “Btbegun” provides farmers, extension professionals, field officers, policymakers, seed suppliers and other stakeholders with the most current information about Bt eggplant — a genetically engineered variety resistant to a ravenous...
  • Department of Global Development
  • School of Integrative Plant Science
  • Plant Breeding and Genetics Section