Back

Discover CALS

See how our current work and research is bringing new thinking and new solutions to some of today's biggest challenges.

|
By Krisy Gashler
  • Department of Global Development
  • School of Integrative Plant Science
  • Plant Pathology and Plant-Microbe Biology Section
  • Global Development
  • Plants
Share

In academic publishing, one measurement of a work’s importance is how many other academics have cited it. This long-standing system has the benefit of simplicity and helping to form a common knowledge base. But especially for those working to understand how to reduce hunger and support sustainable agriculture in developing countries, it has the drawback of maintaining hidden systems of privilege and power built into academic research.

For example: did you know that many of the academics who study applied agricultural research and live in developing countries don’t publish most of their work in the journals captured by Western academic databases like ISI and Scopus? Their peer-reviewed work is frequently published by NGOs or governmental agencies like the United Nations Food and Agriculture Organization.

“In Africa, so much of the research we need is not being captured by our databases,” said Jaron Porciello, Associate Director for Research Data Engagement in the Department of Global Development at Cornell University. “Rather than just asking, ‘who are the most cited researchers?’ I wanted to know, ‘who is writing about the interventions that could be used to improve the lives of small-scale farmers?’”

Porciello is co-director of Ceres2030: Sustainable solutions to end hunger, an initiative that has brought together a diverse group of researchers from across the globe with the goal of understanding how to achieve the United Nations Sustainable Development Goal of zero world hunger by 2030.

Climate-resilient plants team

Maricelis Acevedo

Lead author, Associate Director, Delivering Genetic Gain in Wheat Project, Cornell University

Livia Bizikova

Director, SDG Knowledge, International Institute for Sustainable Development

Karen Cichy

Research Plant Geneticist, U.S. Department of Agriculture, Agriculture Research Service.

Kate Ghezzi-Kopel

Health Sciences and Evidence Synthesis Librarian, Albert R. Mann Library, Cornell University

Krista Isaacs

Assistant Professor of International Seed Systems. Michigan State University

Sisi Meng

Visiting Assistant Professor of Economics, Keough School of Global Affairs, Notre Dame

Kevin Pixley

Director, Genetic Resources Program, International Maize and Wheat Improvement Center

Jaron Porciello

Co-director Ceres2030, information scientist, Global Development, Cornell University.

Hale Ann Tufan

Associate Director, Feed the Future Innovation Lab for Crop Improvement; Project Manager, NextGen Cassava Breeding Project, Global Development, Cornell University

Nkulumo Zinyengere

Climate Change Specialist, the World Bank

Maricelis Acevedo
Livia Bizikova
Karen Cichy
Kate Ghezzi-Kopel
Krista Isaacs
Sisi Meng
Kevin Pixley
Jaron Porciello
Female professor stands in outdoor archway
Nkulumo Zinyengere

Maricelis Acevedo is Associate Director for Science for the Delivering Genetic Gain in Wheat Project at Cornell University. She leads the Climate-resilient Plants research team for Ceres2030, one of eight teams that has used evidence synthesis methods combined with machine learning to assess the scope of existing agricultural research — including that research not normally captured by Western databases.

“When we do an evidence synthesis of this type, we frequently look within our school of thinking, and at the authors that we know, but when you provide the machine with a set of keywords, with no bias for author, or institution, or impact – you have a much more unbiased net,” Acevedo said. “I think the machine learning, in the future, will be key in doing this type of work.”

All of the Ceres2030 teams focused on interventions that had solid evidence of beneficial impact for smallholder farmers in developing countries. For Acevedo and her team, that meant looking at crop-specific research that helped farmers cope with the challenges of climate change, such as wheat varieties that were more tolerant to high temperatures, rice that could survive more time being submerged, and maize that could handle drought conditions. The team looked at research from cutting-edge genetic research labs, and from studies on heirloom varieties.

“It may be that farmers in one region have been selecting for drought tolerance for hundreds of years. And maybe those seeds could be useful in another area that is now experiencing drought,” Acevedo said. “Farmers are very knowledgeable — if we can connect this knowledge to other farmers, that will also strengthen climate resilience.”

Acevedo’s team was interested in knowing not just which seeds were superior, but how, why, and if the farmers who could benefit from them were actually adopting and planting them. The diverse Ceres2030 research team — plant pathologists, plant breeders, geneticists, specialists in seed systems, and data managers— helped to keep that goal front and center.

“Having this diverse team was key to be able to really dig deep on the topic and see what was relevant to the smallholder farmers we want to serve,” Acevedo said.

The research team discovered that the single most important factor in a smallholder farmers’ adoption of a new variety is extension and education.

“That could be surprising to some people because it’s not something new. It’s not something that requires a new technology. But it’s something we know is extremely important. For farmers to take in the new research that has bene developed, they need help adopting it in their farm,” Acevedo said. “This intervention of providing extension, education, training, about climate change, and about potential solutions of how to adapt, is key.”

Also crucial is having a strong seed system, whether public or private, formal or informal, so farmers can access new seed varieties, she said.

“Being part of this project allowed me to be hopeful that we can communicate as scientists with donors and policymakers what the science says and how to make sense of it, so we can make real impacts,” Acevedo said. “I’ll be really happy if the next generation of investments are based on data and science and evidence.”

Keep Exploring

Clear round dishes sitting on a lab bench

News

Using microbes, scientists aim to extract rare-earth elements
Most of the world’s rare-earth elements – there are 17 on the periodic table – have been mined in China for the past quarter-century, according to the U.S. Geological Survey. But the mining and finishing processes there create toxic waste and...
  • Atkinson Center
  • Biological and Environmental Engineering
  • Earth and Atmospheric Sciences
A man standing and taking leafy, green produce from a woman sitting in a market

News

Cornell unites science and policy to end hunger
New farming methods and crops that perform better in a changing environment are essential to higher living standards, but obtaining these innovations are too often impossible for small-scale farmers. “Our interest is to have improved seed...
  • Department of Global Development
  • Agriculture
  • Food