In the search for more sustainable energy technologies, many of the solutions humans are turning to – rechargeable batteries, massive wind turbines, electric cars, LED lighting – rely on what are known as rare-earth elements. There are 17 rare earths on the periodic table, ranging from the lightest, scandium, to the heaviest, lutelium, and they are highly valued for their unique physical and chemical properties that make them useful in sustainable energy technologies.
As is so often the case, solutions to existing problems can create their own, new problems. This is certainly true of our reliance on rare earths to make technologies greener. The industrial processes used to isolate them from their naturally-occurring ores often rely on strong acids or bases that can pollute the environment. Harmful effects of the mining include contaminated soil and water, deforestation and negative health impacts on humans and other animals. These processes also require large amounts of energy.
Our reliance on rare earth elements is not going to end any time soon, so researchers have begun to look for ways to obtain them in less environmentally harmful ways.
A multidisciplinary team at Cornell is on the leading edge of this push to help green technologies get even greener. Between the Department of Biological and Environmental Engineering and the Department of Earth and Atmospheric Sciences — units shared between the College of Engineering (ENG) and College of Agriculture and Life Sciences (CALS) — faculty, postdocs and graduate students have all come together to tackle this problem.
Led by Buz Barstow, assistant professor of biological and environmental engineering (CALS), the team is looking at ways to “program” microbes to produce organic acids that can leach rare-earth elements from crushed ores or from recycled electronics components. These microbial acids will be far safer than the acids and bases used in existing industrial processes.
Altogether, the processes Barstow and the team of engineers are pioneering can be called “biomining,” and if proven scalable, will have a major impact on the sustainability of future electronics as well as on the health of people and the environment.