Back

Discover CALS

See how our current work and research is bringing new thinking and new solutions to some of today's biggest challenges.

|
By Jana Wiegand
  • School of Integrative Plant Science
  • Plant Biology Section
  • Agriculture
  • Plants
  • Crops
  • Biology
  • Genetics
Share
Tracking the role of messenger RNA, or mRNA, through plants is like playing a game of genetic telephone.

Scientists know that some mRNA – which carries genetic code to a living organism’s protein-making machinery – are making the journey from root to shoot. But they don’t know which of the thousands of strands are purposely trying to share genetic information between organ systems.

This is a critical question, especially when it comes to plant grafting. That’s where mobile mRNA could be used to carry signals across organ systems and help alter plants’ responses to environmental stresses.

Margaret Frank, Ph.D. ’14, assistant professor of plant biology in the School of Integrative Plant Science, in the College of Agriculture and Life Sciences, is tackling this problem by developing a model to observe the real-time movement of mRNA through plant systems.

The National Science Foundation recently awarded Frank a five-year, $1.3 million Faculty Early Career Development Program grant for her proposal, “Harnessing the Plant Mobileome to Predict, Design, and Deliver Long-Distance RNAs in Plants.”

Frank will use computational analysis to separate the signals from the noise and determine the role of specific mRNAs in long-distancing signaling, with the hope of eventually engineering a method for using mRNA to deliver targeted information across grafted plant systems.

“There’s a lot of potential that comes from a better understanding of how mRNAs are delivered through the plant and their potential to translate into signals,” Frank said. “One of the pie-in-the-sky goals is to be able to graft on a donor branch that rapidly alters [a crop’s] flowering time in response to temperature, for example, which would be really impactful in light of climate change.”

However, most of what scientists already know about mRNAs is limited to their role in translating DNA into expressed proteins within individual cells where they are produced. Frank’s project will observe the mobile mRNA over long distances to understand what, if any, genetic information is getting transferred between different organs of different species – in this case, eggplant and tomato.

“Those genomes are sufficiently diverged,” Frank said, “that we can track almost all the RNAs that are generated from eggplant versus tomato, and see at the genomic scale which RNAs are moving from the root to the shoot, or the shoot to the root.”

Two grafted plants, one with tomato shoots and eggplant roots, and the other with eggplant shoots and tomato roots
Left: A grafted plant with a tomato shoot and eggplant roots. Right: A grafted plant with an eggplant shoot and tomato roots. Photos provided.

Frank’s lab has already demonstrated that the two species are graft-compatible. Now they’re generating a reference genome for an eggplant variety from the Bangladesh Agricultural Research Institute, which will not only be used in this study, but will also benefit plant breeders around the world. (A reference genome for tomatoes already exists.)

The second part of the project involves creating a live imaging system to monitor the mRNAs’ movement through the vasculature of the grafted plants. Frank’s team will track the thousands of mRNAs over daily cycles and through developmental time periods, from early in the plant’s life cycle through reproductive development.

To keep tabs on so many moving parts, Frank’s team will tag the mRNAs using fluorescence imaging to monitor their real-time movement. Then, to make sure that the tracking is accurate, the researchers will harvest tissue samples and use a technique called RNA PAINT to pinpoint how the different eggplant and tomato mRNA strands moved through the grafted plants.

“RNA PAINT allows you to actually paint RNA transcripts in nonliving tissue,” Frank said. “So you can harvest the tissue and then look at where RNAs are at the subcellular level.”

Using this combination of live tracking, tissue sampling and bioinformatics, the team should be able to determine on the genomic scale whether the mRNA movement is related to passive fluctuation or if it takes a more targeted approach. If the latter is true, then Frank will have solved the mystery regarding mRNA’s role as long-distance signal carriers in plant systems.

The final phase of the project will build a targeted delivery system for mRNA to cross the graft junction and deposit genetic information into the other species’ organ systems. By identifying the traits that make the existing mRNAs mobile, the researchers hope to activate long-distance signaling mechanisms in other mRNAs and program them to deliver specific DNA transcripts.

As farmers around the world try to respond to new threats from insects, disease and changing weather patterns, plant breeders could use these techniques to develop more resilient varieties in a fraction of the current time.

“You can imagine rapidly adapting root systems to better scavenge nutrients or to avoid toxic elements in the soil,” Frank said. “Hopefully they can do more targeted engineering in the future, using those genomic resources.”

The Cornell Research Development team worked with Frank to refine her proposal and connect with program officers at the National Science Foundation.

“One of the things I do is help position faculty with federal agencies so that they can develop relationships, find their niche and situate themselves for long-term success,” said Josephine Martell, director of Research Development. “As a new faculty member, if you can develop a relationship with the correct federal funding agency, it exponentially increases your chances of having a successful research career.”

In May 2019, Frank traveled to Washington, D.C. with the Research Development team as part of the Grant Fellows Workshop series that they offer every spring and fall.

“I actually got to serve on an NSF grant panel and learn a lot about the critical review process for submitted grants,” Frank said. “That was really helpful.”

Designed for early career faculty, the Grant Fellows Workshop series provides guidance for developing review-ready proposals. The team also offers a targeted NSF CAREER workshop series to prepare faculty for their final submissions.

Frank noted that the Research Development team also provided valuable support in developing the outreach component of her NSF grant. Her original plan involved working with undergraduate researchers at the Boyce Thompson Institute to do hands-on outreach projects in the Ithaca community. When COVID-19 restricted the possibility for direct outreach, Frank partnered with the Ithaca Children’s Garden to make and distribute plant kits for local schoolchildren to use at home, building on their virtual learning platform.

Collaborators on the NSF grant include Umair Ahsan, formerly a postdoctoral researcher in the Frank Lab. Other partners include researchers at the University of California, Berkeley; Michigan State University; the University of Delaware; the Bangladesh Agricultural Research Institute; HudsonAlpha Institute for Biotechnology; and the University of Southampton, in the U.K.

A version of this article also appears in the Cornell Chronicle.

Header image: Margaret Frank, assistant professor of plant biology, received a $1.3 million NSF grant to study the real-time movement of messenger RNA through grafted plant systems. Photo: Allison Usavage.

Jana Wiegand is the editorial content manager for the College of Agriculture and Life Sciences.

Keep Exploring

News

A new book co-edited by a Cornell faculty and student highlights the distortion of gender research in agricultural development and calls for transformative changes to the power dynamics and political systems that harm women and worsen hunger in...

  • School of Integrative Plant Science
  • Plant Breeding and Genetics Section
  • Plants

News

A global analysis by Cornell researchers found that recycling all the human and livestock feces and urine on the planet would contribute substantially to meeting the nutrient supply for all crops worldwide, thereby dramatically reducing the...

  • Agriculture Sciences Major
  • Food Science
  • Nutritional Sciences