We look for ways to develop the prerequisite information and tools to express more efficient Rubisco variants in synthetic biology systems and in crops: by identifying unique structure-function, overcoming chaperone incompatibilities, and understanding and utilizing the catalytic influence of the auxiliary Rubisco small subunit.
Loh, D. H., & Gunn, L. H. ^ (2025). A SynBio explosion: a whole new world for Rubisco engineering. Journal of Experimental Botany, 76, 2593-2597.
Robison, T.A., Oh, Z.G., Lafferty, D., Xu, X., Villarreal, J.C., Gunn, L.H^., & Li, F.W^. (2025). Hornworts reveal a spatial model for pyrenoid-based CO2-concentrating mechanisms in land plants. Nature Plants. 11, 63-73.
Oh, Z-G.^, Robison, T.A., Loh, D-H., Ang, W.S.L., Ng, J., Li, F-W^. and Gunn, L.H^. (2024). Unique biogenesis and kinetics of hornwort Rubiscos revealed by synthetic biology systems. Molecular Plant, 17(12), 1833-1849.
Lafferty, D.J., Robison, T.A., Gunadi, A., Schafran, P.W., Gunn, L.H., Van Eck, J., & Li, F.W^. (2024). Biolistics-mediated transformation of hornworts and its application to study pyrenoid protein localization. J. Exp. Bot., erae243.
Rizzieri, Y. C., Lipari, A., Gunn, L.H. , & Li, F. W^. (2023). Twelve new metagenome-assembled genomes from non-axenic culture of Griffithsia monilis (Rhodophyta). Microbiology Resource Announcements, e00728-23.
Zhou, Y.*, Gunn, L.H.*, Birch, R., Andersson, I., & Whitney, S. M^. (2023). Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth. Nature Plants, 1-9.
Ekeberg, T., Assalauova, D., Bielecki, J., Boll, R., Daurer, B.J., Eichacker, L.A., ... & Maia, F.R^. (2024). Observation of a single protein by ultrafast X-ray diffraction. Light: Science & Applications, 13(1), 15.
Oh, Z.G., Askey, B. and Gunn, L.H^. (2022). Red Rubiscos and opportunities for engineering green plants. J. Exp. Bot. 74, 520-542.
Mao, Y., Catherall, E., Díaz-Ramos, A., Greiff, G. R., Azinas, S., Gunn, L.H., and McCormick, A.J^. (2022). The small subunit of Rubisco and its potential as an engineering target. J. Exp. Bot. erac309.
- Gunn, L.H., Avila, E.M., Birch, R., and Whitney, S.M. (2020). The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth. Proc. Natl. Acad. Sci. 117, 25890-2589.
- Bielecki, J., Hantke, M.F., Daurer, B.J., Reddy, H.K.N., Hasse, D., Larsson, D.S.D., Gunn, L.H., Svenda, M., Munke, A., Sellberg, J.A., et al. (2019). Electrospray sample injection for single-particle imaging with X-ray lasers. Science Advances 5:eaav8801.
- Valegård, K., Hasse, D., Andersson, I., and Gunn, L.H. (2018). Structure of Rubisco from Arabidopsis thaliana in complex with 2-carboxyarabinitol-1,5-bisphosphate. Acta Crystallogr. D 74, 1-9.
- Gunn, L.H., Valegård, K., and Andersson, I. (2017). A Unique Structural Domain in Methanococcoides burtonii Rubisco Acts as a Small-subunit Mimic. J. Biol. Chem. jbc.M116.767145.
- Okamoto, K., Miyazaki, N., Larsson, D.S.D., Kobayashi, D., Svenda, M., Mühlig, K., Maia, F.R.N.C., Gunn, L.H., Isawa, H., Kobayashi, M., et al. (2016). The infectious particle of insect-borne totivirus-like Omono River virus has raised ridges and lacks fibre complexes. Sci. Rep. 6, 33170.
- Sharwood, R.E., Ghannoum, O., Kapralov, M.V., Gunn, L.H., and Whitney, S.M. (2016). Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nat. Plants 2, 16186.