Adrienne Roeder
Associate Professor, School of Integrative Plant Science Plant Biology Section
I am fascinated by how beautiful and complex patterns form during development. The patterning process generally requires that one cell adopts a different identity from its neighbor. Patterns are generally formed while the cells are growing and dividing, yet the coordination of cell division and growth with the process of patterning is only beginning to be understood. In plants, regulation of cell division is crucial for proper development because plant cells cannot move or even slip relative to one another. I am interested in how growth and cell division themselves contribute to the both the development and patterning of specialized cell types in plants - a process which requires analysis of development in space and time. My laboratory uses a new, three pronged computational morphyodynamics approach that helps biologists understand how development occurs in space and time. First, we use a confocal microscope to image the living plant so that we can observe how cells grow and divide, as well as how gene expression patterns change in time during development. Every 6 hours we take the plant out of the growth room, put it on the microscope, take an image, and return the plant to the growth room. Second, we collaborate with image processing experts, who develop software that automatically detects features in the images such as nuclei and plasma membranes. For example, we can determine the number and size distribution of a population of cells. Finally, we use computational modeling to examine the consequences of our hypotheses in time. We compare our model to the live imaging data to see whether the model recreates the development of the plant. The models help us to refined hypotheses and design new experiments to test them.
Interests
Development and patterning of specialized cell types
Plant cell imaging
Recent Research
The Arabidopsis sepal is a useful model system for examining the role of growth and cell division in patterning of the organ because it is accessible for imaging and manipulation. The outer epidermis of the sepal contains a characteristic pattern of giant cells, which stretch a fifth the length of the sepal, interspersed between smaller cells. This pattern of different cell sizes is tightly intertwined with cell division and growth: it arises from variation in the times when cells stop dividing and enter a specialized endoreduplication cell cycle (Roeder et al., 2010). We investigated the molecular networks underlying giant cell and small cell patterning. We found that the cell cycle inhibitor LGO (pronounced "lego ", because the lgo mutant loses giant cells and is made of small blocks) promotes giant cell formation by causing cells to exit division and enter endoreduplication early. The pattern is also regulated by intercellular signaling and transcriptional regulation via genes of the epidermal specification pathway, which control the identity of giant cells. Conversely, small cell identity appears to be linked to cell cycle regulation because altering the cell cycle is sufficient to change small cell identity. In my laboratory here at Cornell, we are using genomics combined with imaging to examine in more detail the coordination of regulation of the cell cycle with giant and small cell identity. First, we are characterizing these cells identities by asking how different are the gene expression patterns of giant and small cells. Second, we are using imaging and modeling to examine how the growth of cells within the sepal is coordinated to produce the pattern. Third, we continue to investigate the molecular networks controlling giant and small cell patterning with genetics and are currently focusing on a mutant that produces ectopic large cells. Finally, we are looking at how our findings in sepals apply to other cell types and organs in Arabidopsis and other plants. The close interrelationship between patterning, growth and division means that we must understand how manipulating one affects the other two in order to engineer better crop plants or biofuels.
Selected Journal Publications
Google Scholar profile and publications.
- Burda, I., Martin, A.C., Roeder, A.H.K., and Collins, M.A. (2023). The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Developmental Cell 58, 2850–2866. 10.1016/j.devcel.2023.11.003.
- Cammarata, J., Roeder, A.H.K., and Scanlon, M.J. (2023). The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. J. Exp. Bot. 74, 6541–6550. 10.1093/jxb/erad299.
- Roeder AHK (2023) Sepals. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0029560
- Hong, L., Rusnak, B., Ko, C., Xu, S., Hi, X., Qiu, D., Kang, E.S., Pruneda-Paz, J.L., Roeder, A.H.K. (2023) Enhancer activation via TCP and HD-ZIP and repression by Dof transcription factors mediate giant cell-specific expression. Plant Cell. 35, 2349–2368. DOI: 10.1093/plcell/koad054
- Harline, K., Roeder, A.H.K. (2023) An optimized pipeline for live imaging whole Arabidopsis leaves at cellular resolution. Plant Methods 19, 10. PMCID: PMC9890716
- Cammarata, J., Farfan, C.M., Scanlon, M., and Roeder, A.H.K. (2022) Cytokinin-CLAVATA crosstalk is an ancient mechanism regulating shoot meristem homeostasis in land plants. PNAS 119, e2116860119.
- Burda, I., and Roeder, A.H.K. (2022) Stepping on the molecular break: Slowing down proliferation to allow differentiation. Preview in Developmental Cell 57, 561-563.
- Roeder, A.H.K., Otegui, M.S., Dixit, R., Anderson, C.T., Faulkner, C., Zhang, Y., Harrison, M.J., Kirchhelle, C., Goshima, G., Coate, J.E., Doyle, J.J., Hamant, O., Sugimoto, K., Dolan, L.., Meyer, H., Ehrhardt, D.W., Boudaoud, A., and Messina, C. (2021). Fifteen compelling open questions in plant cell biology. Plant Cell 34, 72-102.
- Weijers, D., Bezanilla, M., Jiang, L., Roeder, A.H.K., and Williams, M. (2021). Back to the roots: A focus on plant cell biology. Plant Cell 34, 1-3
- Roeder, A.H.K. (2021) Arabidopsis sepals: A model system for the emergent process of morphogenesis. Quantitative Plant Biology 2, 314.
- Harline, K., Martínez-Gómez, J., Specht, C.D., and Roeder, A.H.K. (2021) A life cycle for modeling biology at different scales. Front Plant Sci 12, 710590.
- Harline, K., and Roeder, A.H.K. (2020) Plant Morphogenesis: Mechanical Feedback Position is Crucial in Organ Flattening. Dispatch in Current Biology 30, R168-R170.
- Zhu, M., Chen, W., Mirabet, V., Hong, L., Bovio, S., Strauss, S., Schwarz, E.M., Tsugawa, S., Wang, Z., Smith, R.S., Li, C.-B., Hamant, O., Boudaoud, A.^, Roeder, A.H.K.^ (2020) Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. Nature Plants, 6,686-698. DOI: 10.1038/s41477-020-0666-7
- Moreno, S., Canales, J. Hong, L., Robinson, D., Roeder, A.H.K., and Gutierez, R.A.^ (2020) Nitrate-defines shoot size: compensatory roles for endoreduplication and cell division in Arabidopsis thaliana growth. Current Biology 30, 1-13. DOI: 10.1016/j.cub.2020.03.036
- Zhu, M. and Roeder, A.H.K.^ (2020) Plants are better engineers: the complexity of plant organ morphogenesis. Current Opinion in Genetics and Development 63, 16-23. DOI: 10.1016/j.gde.2020.02.008
- Vadde, B.V.L. and Roeder, A.H.K.^ (2020) Can the French Flag and Reaction Diffusion models explain flower patterning? Celebrating the 50th Anniversary of the French Flag Model. Flowering Newsletter in the Journal of Experimental Botany 10, 2886–2897. DOI:10.1093/jxb/eraa065.
- Ripoll, J.-J.*^, Zhu, M.*, Brocke, S., Hon, C.T., Yanofsky, M.F., Boudaoud, A., and Roeder, A.H.K.^ (2019) Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. PNAS 116, 25333–25342. DOI: 10.1073/pnas.1914096116
- Roeder, A.H.K.^ (2019) Computational Image Processing in Microscopy. Teaching tools in Plant Biology. The Plant Cell https://plantae.org/blog/new-teaching-tool-computational-image-processing-in-microscopy/
- Cammarata, J., Roeder, A.H.K., and Scanlon, M.J.^ (2019) Cytokinin and CLE signaling are highly intertwined developmental regulators across tissues and species. Current Opinion in Plant Biology 51, 96-104. DOI: 10.1016/j.pbi.2019.05.006
- Roeder, A.H.K.^ and Harrison, C.J.^ (2019) Editorial Overview: Scaling development through the plant tree of life. Current Opinion in Plant Biology 47, A1-A4. DOI: 10.1016/j.pbi.2019.01.002
- Cammarata, J., Roeder, A.H.K.^ (2018) Development: Cell polarity is coordinated over an entire plant leaf. Dispatch for Current Biology 28, R884-R887. DOI: 10.1016/j.cub.2018.07.007
- Hong, L.*, Dumond, M.*, Zhu, M., Tsugawa, S., Li, C.-B., Boudaoud, A., Hamant, O., and Roeder, A.H.K.^ (2018) Heterogeneity and robustness in plant morphogenesis: from cells to organs. Annual Review of Plant Biology. 69:18.1–18.27. DOI: 10.1146/annurev-arplant-042817-040517
- Roeder, A.H.K.^ (2018) Use it or average it: stochasticity in plant development. Current Opinion in Plant Biology 41, 8-15. DOI: 10.1016/j.pbi.2017.07.010
- Robinson, D.O. and Roeder, A.H.K.^ (2017) Small RNAs turn over a new leaf as morphogens. Preview for Developmental Cell 43, 253-254. DOI: 10.1016/j.devcel.2017.10.025
Outreach and Extension Focus
My outreach activities primarily focus on interesting middle school girls in science. Through the Expanding Your Horizons program, I have taught hands on workshops in which girls isolate DNA from the vegetable cauliflower using kitchen ingredients. The girls learn that all living things, including our food, contain DNA. I also show the girls how to translate DNA sequences into the amino acids of the protein. They discover that a natural mutation in the cauliflower gene causes a truncation in the Cauliflower protein, which produces the big vegetable head that we like to eat.
Courses Taught
- PLSCI 4220/6220: Comparative Plant Development: Evo-Devo
- PLSCI 6841: Plant Form and Function: Anatomy, Cell Biology, and Development
- BIOG 2990: Introduction to Research Methods in Biology
In the cell biology and developmental biology sections of PLSCI 6841 Plant Form and Function: Anatomy, Cell Biology and Development, I introduce the students to plant cell biology, plant development and the techniques used to study these fields. In interactive lectures, I discuss microscopy, fluorescent proteins and construct design, subcellular localization and trafficking, the cytoskeleton and cell wall, organelles, plant cell division, specification of cell identity, transcription factors, pattern formation, intercellular signaling, morphogenesis, auxin and phyllotaxy, plant hormones, and environmental regulation of development. To solidify their understanding, the students discuss in great detail five recent research papers that illustrate these techniques and topics. For one of these papers I ask the student to practice their skills in evaluating papers by pretending they are referees for the journal. In additions I lead the students through a hands on image processing workshop in which they use open access software to visualize and analyze sample microscopy images. Homework problem sets and exams include experiment proposal and data interpretation problems so that students learn to apply their knowledge.
Contact Information
239 Weill Hall
Ithaca, NY 14853
ahr75 [at] cornell.edu
More information:
Graduate Fields
- Genetics and Development
- Plant Biology
Education
- Doctorate
University of California, San Diego
2005
- Bachelor of Science
Stanford University
1999
- Genetics and Development
Adrienne in the news
News
With a $3 million National Science Foundation grant, Cornell researchers are creating a new approach to architecture by learning how plants and animals form internal structures.
- School of Integrative Plant Science
- Plant Biology Section
- Biology
News
- School of Integrative Plant Science
- Plant Biology Section
- Plants