You performed electroantennography to study insect response; how does that work?
Electroantennography is basically just the process of completing a circuit with the insect’s antenna. You attach a wire or a resistor to the insect’s antenna, then you expose it to potential stimuli – like chemical scents or humidity changes – and then see whether the antenna reacts. Theoretically, you could have something like a lightbulb and then an open circuit: You attach the antenna and then stimulate it to see whether the lightbulb suddenly grows brighter or dimmer. If it’s something the insect can’t perceive, then nothing happens; if they can perceive that stimulus, then you see a change in voltage.
How did you become involved in the research published this week in Current Biology?
My contribution to this paper happened so quickly. I had done previous research with insect behavior and humidity, and I knew how to use the technology, so Shayla [Salzman, first author of the paper] basically texted me and said, ‘Hey, if I mailed you weevils, would you be willing to do this?’ I said yes, and in less than 24 hours, Shayla got someone to pick up weevils in Florida and the next afternoon, there was a shipment of weevils in the lab. These organisms do not last long in captivity, so it was a whirlwind banging out all the chemistry and the humidity experiments in a couple of days. It was a really interesting team effort, and it was only because I had already done a lot of the prior work that we were able to get it done so quickly.
What did your efforts contribute to the research findings?
I was originally brought on to test a flight of chemicals – scent odors produced by the cycad plants we were studying. I was there to help check what the weevils, which pollinate the cycads, responded to. However, because I had done previous work about the role of humidity on electroantennograms, I had in the back of my mind that humidity might be playing a role here. And sure enough, when doing the chemistry, it became really obvious to me that humidity was playing an important role – as strong a role as scent, we discovered. This was surprising because, certainly from a human-biased perspective, we don’t have those organs to sense humidity; our ability to perceive humidity is completely contingent on our ability to sense temperature. So the idea that something has as strong of a reaction to smelling, say, a wintergreen mint as they would to humidity changing for a fraction of a second. It was really surprising to us and very exciting to see.